Search results
Results from the WOW.Com Content Network
Block diagram of a fuel cell. Source I (Paulsmith99 ) created this work entirely by myself, based on the original png version. Date 17:35, 25 June 2010 (UTC) Author Paulsmith99 Permission (Reusing this file) See below. Other versions Fuel Cell Block Diagram.png
Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges (50 to ...
This work has been released into the public domain by its author, Sakurambo.This applies worldwide. In some countries this may not be legally possible; if so: Sakurambo grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Electro-chemical reaction Diagram of PEM MEA. A membrane electrode assembly (MEA) is an assembled stack of proton-exchange membranes (PEM) or alkali anion exchange membrane (AAEM), catalyst and flat plate electrode used in fuel cells and electrolyzers. [1] [2]
A block diagram of a fuel cell. Design features in a fuel cell include: The electrolyte substance, which usually defines the type of fuel cell, and can be made from a number of substances like potassium hydroxide, salt carbonates, and phosphoric acid. [18] The most common fuel that is used is hydrogen.
Starting fluid is not recommended for regular use with some two-stroke engines because it does not possess lubricating qualities by itself. Lubrication for two-stroke engines is achieved using oil that is either mixed into the fuel by the user or injected automatically into the fuel supply; engines requiring premixed fuel that are run solely on starting fluid do not receive an adequate supply ...
The planar fuel cell design geometry is the typical sandwich type geometry employed by most types of fuel cells, where the electrolyte is sandwiched in between the electrodes. SOFCs can also be made in tubular geometries where either air or fuel is passed through the inside of the tube and the other gas is passed along the outside of the tube.
Direct methanol fuel cells or DMFCs are a subcategory of proton-exchange membrane fuel cells in which methanol is used as the fuel and a special proton-conducting polymer as the membrane (PEM). Their main advantage is low temperature operation and the ease of transport of methanol, an energy-dense yet reasonably stable liquid at all ...