Search results
Results from the WOW.Com Content Network
Network-intensive applications like networked storage or cluster computing need a network infrastructure with a high bandwidth and low latency. The advantages of RDMA over other network application programming interfaces such as Berkeley sockets are lower latency, lower CPU load and higher bandwidth. [ 6 ]
RDMA supports zero-copy networking by enabling the network adapter to transfer data from the wire directly to application memory or from application memory directly to the wire, eliminating the need to copy data between application memory and the data buffers in the operating system.
Network Device Interface (NDI) is a software specification developed by the technology company NewTek.It enables high-definition video to be transmitted, received, and communicated over a computer network with low latency and high quality.
In contrast to standard Ethernet according to IEEE 802.3 and Ethernet bridging according to IEEE 802.1Q, time is very important in TSN networks.For real-time communication with hard, non-negotiable time boundaries for end-to-end transmission latencies, all devices in this network need to have a common time reference and therefore, need to synchronize their clocks among each other.
InfiniBand (IB) is a computer networking communications standard used in high-performance computing that features very high throughput and very low latency.It is used for data interconnect both among and within computers.
High bandwidth memory (HBM) are basically a stack of memory chips, small components that store data. They can store more information and transmit data more quickly than the older technology ...
Throughput is controlled by available bandwidth, as well as the available signal-to-noise ratio and hardware limitations. Throughput for the purpose of this article will be understood to be measured from the arrival of the first bit of data at the receiver, to decouple the concept of throughput from the concept of latency.
IEEE 802.15.4-2003 (Low Rate WPAN) deals with low data rate but very long battery life (months or even years) and very low complexity. The standard defines both the physical (Layer 1) and data-link (Layer 2) layers of the OSI model. The first edition of the 802.15.4 standard was released in May 2003.