enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions .

  3. Beam and Warming scheme - Wikipedia

    en.wikipedia.org/wiki/Beam_and_Warming_scheme

    In numerical mathematics, Beam and Warming scheme or Beam–Warming implicit scheme introduced in 1978 by Richard M. Beam and R. F. Warming, [1] [2] is a second order accurate implicit scheme, mainly used for solving non-linear hyperbolic equations. It is not used much nowadays.

  4. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  5. MUSCL scheme - Wikipedia

    en.wikipedia.org/wiki/MUSCL_scheme

    Thus, the accuracy of a TVD discretization degrades to first order at local extrema, but tends to second order over smooth parts of the domain. The algorithm is straight forward to implement. Once a suitable scheme for F i + 1 / 2 ∗ {\displaystyle F_{i+1/2}^{*}} has been chosen, such as the Kurganov and Tadmor scheme (see below), the solution ...

  6. False diffusion - Wikipedia

    en.wikipedia.org/wiki/False_diffusion

    It was recognized independently by several investigators [1] [2] that the less expensive but only first order accurate upwind scheme can be employed but that this scheme produces results with false diffusion for multidimensional cases. Many new schemes have been developed to counter false diffusion but a reliable, accurate and economical ...

  7. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    The Gauss–Legendre method with s stages has order 2s, so its stability function is the Padé approximant with m = n = s. It follows that the method is A-stable. [34] This shows that A-stable Runge–Kutta can have arbitrarily high order. In contrast, the order of A-stable linear multistep methods cannot exceed two. [35]

  8. Lax–Wendroff method - Wikipedia

    en.wikipedia.org/wiki/Lax–Wendroff_method

    What follows is the Richtmyer two-step Lax–Wendroff method. The first step in the Richtmyer two-step Lax–Wendroff method calculates values for f(u(x, t)) at half time steps, t n + 1/2 and half grid points, x i + 1/2.

  9. QUICK scheme - Wikipedia

    en.wikipedia.org/wiki/Quick_scheme

    In order to find the cell face value a quadratic function passing through two bracketing or surrounding nodes and one node on the upstream side must be used. In central differencing scheme and second order upwind scheme the first order derivative is included and the second order derivative is ignored.