Search results
Results from the WOW.Com Content Network
In the analysis of the molecular formula of organic molecules, the degree of unsaturation (DU) (also known as the index of hydrogen deficiency (IHD), double bond equivalents (DBE), or unsaturation index [1]) is a calculation that determines the total number of rings and π bonds. A formula is used in organic chemistry to
A typical triple bond, for example in acetylene (HC≡CH), consists of one sigma bond and two pi bonds in two mutually perpendicular planes containing the bond axis. Two pi bonds are the maximum that can exist between a given pair of atoms. Quadruple bonds are extremely rare and can be formed only between transition metal atoms, and consist of ...
This is more than the naive π-bond order of (for a total bond order of ) that one might guess when simply considering the Kekulé structures and the usual definition of bond order in valence bond theory. The Hückel definition of bond order attempts to quantify any additional stabilization that the system enjoys resulting from delocalization.
The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). [1] However, pI is also used. [2] For brevity, this article uses pI.
Based on the covalent bond classification method (from where LBN is derived), the equation for determining ligand bond number is as follows: LBN = L + X + Z. Where L represents the number of neutral ligands adding two electrons to the metal center (typically lone electron pairs, pi-bonds and sigma bonds. Most encountered ligands will fall under ...
Sigma and pi bonds in graphene. Sigma bonds result from an overlap of sp 2 hybrid orbitals, whereas pi bonds emerge from tunneling between the protruding p z orbitals. For clarity, only one p z orbital is shown with its three nearest neighbors.
In chemistry, bond order is a formal measure of the multiplicity of a covalent bond between two atoms. As introduced by Gerhard Herzberg, [1] building off of work by R. S. Mulliken and Friedrich Hund, bond order is defined as the difference between the numbers of electron pairs in bonding and antibonding molecular orbitals.
The σ-π model differentiates bonds and lone pairs of σ symmetry from those of π symmetry, while the equivalent-orbital model hybridizes them. The σ-π treatment takes into account molecular symmetry and is better suited to interpretation of aromatic molecules ( Hückel's rule ), although computational calculations of certain molecules tend ...