enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph matching - Wikipedia

    en.wikipedia.org/wiki/Graph_matching

    The case of exact graph matching is known as the graph isomorphism problem. [1] The problem of exact matching of a graph to a part of another graph is called subgraph isomorphism problem. Inexact graph matching refers to matching problems when exact matching is impossible, e.g., when the number of vertices in the two graphs are different. In ...

  3. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    The problem of graph exploration can be seen as a variant of graph traversal. It is an online problem, meaning that the information about the graph is only revealed during the runtime of the algorithm. A common model is as follows: given a connected graph G = (V, E) with non-negative edge weights. The algorithm starts at some vertex, and knows ...

  4. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    This undirected cyclic graph can be described by the three unordered lists {b, c}, {a, c}, {a, b}. In graph theory and computer science, an adjacency list is a collection of unordered lists used to represent a finite graph. Each unordered list within an adjacency list describes the set of neighbors of a particular vertex in the graph.

  5. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    A matching M of a graph G is maximal if every edge in G has a non-empty intersection with at least one edge in M. The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality matching [2]) is a matching that contains the largest possible number of edges. There may be many ...

  6. Matching polynomial - Wikipedia

    en.wikipedia.org/wiki/Matching_polynomial

    The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) ( Gutman 1991 ). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry .

  7. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    For graphs of constant arboricity, such as planar graphs (or in general graphs from any non-trivial minor-closed graph family), this algorithm takes O (m) time, which is optimal since it is linear in the size of the input. [18] If one desires only a single triangle, or an assurance that the graph is triangle-free, faster algorithms are possible.

  8. No-three-in-line problem - Wikipedia

    en.wikipedia.org/wiki/No-three-in-line_problem

    The no-three-in-line drawing of a complete graph is a special case of this result with =. [12] The no-three-in-line problem also has applications to another problem in discrete geometry, the Heilbronn triangle problem. In this problem, one must place points, anywhere in a unit square, not restricted to a grid. The goal of the placement is to ...

  9. Graph (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Graph_(abstract_data_type)

    In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points ), together with a set of unordered pairs of these ...