Search results
Results from the WOW.Com Content Network
Euclid's Proposition 28 extends this result in two ways. First, if a transversal intersects two lines so that corresponding angles are congruent, then the lines are parallel. Second, if a transversal intersects two lines so that interior angles on the same side of the transversal are supplementary, then the lines are parallel.
Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry ...
Tangential – intersecting a curve at a point and parallel to the curve at that point. Collinear – in the same line; Parallel – in the same direction. Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection).
Transversal plane theorem for planes: Planes intersected by a transversal plane are parallel if and only if their alternate interior dihedral angles are congruent. Transversal line containment theorem: If a transversal line is contained in any plane other than the plane containing all the lines, then the plane is a transversal plane.
If the lines AB' and A'B are parallel and the lines BC' and B'C are parallel, then the lines CA' and C'A are parallel. (This is the affine version of Pappus's hexagon theorem). The full axiom system proposed has point, line, and line containing point as primitive notions: Two points are contained in just one line.
Many features observed in geology are planes or lines, and their orientation is commonly referred to as their attitude. These attitudes are specified with two angles. For a line, these angles are called the trend and the plunge. The trend is the compass direction of the line, and the plunge is the downward angle it makes with a horizontal plane ...
(since these are angles that a transversal makes with parallel lines AB and DC). Also, side AB is equal in length to side DC, since opposite sides of a parallelogram are equal in length. Therefore, triangles ABE and CDE are congruent (ASA postulate, two corresponding angles and the included side). Therefore, =
A parallel of a curve is the envelope of a family of congruent circles centered on the curve. It generalises the concept of parallel (straight) lines. It can also be defined as a curve whose points are at a constant normal distance from a given curve. [1]