Search results
Results from the WOW.Com Content Network
The problem of heat transfer in the presence of liquid flowing around the body was first formulated and solved as a coupled problem by Theodore L. Perelman in 1961, [1] who also coined the term conjugate problem of heat transfer. Later T. L. Perelman, in collaboration with A.V. Luikov, [2] developed this approach further.
Convection-cooling is sometimes loosely assumed to be described by Newton's law of cooling. [6] Newton's law states that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings while under the effects of a breeze. The constant of proportionality is the heat transfer coefficient. [7]
The Stanton number (St), is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). [1] [2]: 476 It is used to characterize heat transfer in forced convection flows.
Simple solutions for transient cooling of an object may be obtained when the internal thermal resistance within the object is small in comparison to the resistance to heat transfer away from the object's surface (by external conduction or convection), which is the condition for which the Biot number is less than about 0.1.
As noted, a Biot number smaller than about 0.1 shows that the conduction resistance inside a body is much smaller than heat convection at the surface, so that temperature gradients are negligible inside of the body. In this case, the lumped-capacitance model of transient heat transfer can be used. (A Biot number less than 0.1 generally ...
It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/(m 2 K)). The overall heat transfer rate for combined modes is usually expressed in terms of an overall conductance or heat transfer coefficient ...
In the study of heat conduction, the Fourier number, is the ratio of time, , to a characteristic time scale for heat diffusion, .This dimensionless group is named in honor of J.B.J. Fourier, who formulated the modern understanding of heat conduction. [1]
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.