Search results
Results from the WOW.Com Content Network
In statistics, the Phillips–Perron test (named after Peter C. B. Phillips and Pierre Perron) is a unit root test. [1] That is, it is used in time series analysis to test the null hypothesis that a time series is integrated of order 1.
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.
If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
p-series, a convergence test in mathematics; Huawei P series, mobile phone series by Huawei; Ruger P series, pistols; P-series, of Sony Cyber-shot digital cameras; Sony Ericsson P series, a series of phones; P-series, of Vespa motor scooters
The probability generating function is an example of a generating function of a sequence: see also formal power series. It is equivalent to, and sometimes called, the z-transform of the probability mass function.
The test was devised by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion. The test is only sufficient, not necessary, so some convergent alternating series may fail the first part of the test. [1] [2] [3] For a generalization, see Dirichlet's test. [4] [5] [6]
The two parameters are p 1 and p 2 are specified by determining a cutscore (threshold) for examinees on the proportion correct metric, and selecting a point above and below that cutscore. For instance, suppose the cutscore is set at 70% for a test. We could select p 1 = 0.65 and p 2 = 0.75. The test then evaluates the likelihood that an ...
The Šidák correction is derived by assuming that the individual tests are independent.Let the significance threshold for each test be ; then the probability that at least one of the tests is significant under this threshold is (1 - the probability that none of them are significant).