Search results
Results from the WOW.Com Content Network
Tolerance function (turquoise) and interval-valued approximation (red). Interval arithmetic (also known as interval mathematics; interval analysis or interval computation) is a mathematical technique used to mitigate rounding and measurement errors in mathematical computation by computing function bounds.
The Encyclopedia of Mathematics [7] defines interval (without a qualifier) to exclude both endpoints (i.e., open interval) and segment to include both endpoints (i.e., closed interval), while Rudin's Principles of Mathematical Analysis [8] calls sets of the form [a, b] intervals and sets of the form (a, b) segments throughout.
Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space).
Another form of erfc x for x ≥ 0 is known as Craig's formula, after its discoverer: [27] = (). This expression is valid only for positive values of x , but it can be used in conjunction with erfc x = 2 − erfc(− x ) to obtain erfc( x ) for negative values.
His purpose was to construct a continuous mapping from the unit interval onto the unit square. Peano was motivated by Georg Cantor's earlier counterintuitive result that the infinite number of points in a unit interval is the same cardinality as the infinite number of points in any finite-dimensional manifold, such as the unit square. The ...
In mathematics, a square-integrable function, also called a quadratically integrable function or function or square-summable function, [1] is a real- or complex-valued measurable function for which the integral of the square of the absolute value is finite.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]
In classical mathematics, characteristic functions of sets only take values 1 (members) or 0 (non-members). In fuzzy set theory , characteristic functions are generalized to take value in the real unit interval [0, 1] , or more generally, in some algebra or structure (usually required to be at least a poset or lattice ).