Search results
Results from the WOW.Com Content Network
The radar "looks" with the looking angle θ (or so called off-nadir angle). The angle α between x-axis and the line of sight (LOS) is called cone angle, the angle φ between the x-axis and the projection of the line of sight to the (x; y)-plane is called azimuth angle. Cone- and azimuth angle are related by cosα = cosφ ∙ cosε.
Radar MASINT is a subdiscipline of measurement and signature intelligence (MASINT) and refers to intelligence gathering activities that bring together disparate elements that do not fit within the definitions of signals intelligence (SIGINT), imagery intelligence (IMINT), or human intelligence (HUMINT).
Radar is a system that uses radio waves to determine the distance (), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method [1] used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
Coverage area size is the area that the system can keep under continuous surveillance from a specific orbit. Well known design principles cause a radar's maximum detection range to depend on the size of its antenna (radar aperture), the amount of power radiated from the antenna, and the effectiveness of its clutter cancellation mechanism.
In order to build up a discernible echo, most radar systems emit pulses continuously and the repetition rate of these pulses is determined by the role of the system. An echo from a target will therefore be 'painted' on the display or integrated within the signal processor every time a new pulse is transmitted, reinforcing the return and making ...
Conventional SAR systems are limited in that a wide swath can only be achieved at the expense of a degraded azimuth resolution. Since wide coverage swaths and high resolution output are both important, this poses challenges and contradicting requirements on the design of space-borne SAR systems and related new algorithms.
The bandwidth of a chirped system can be as narrow or as wide as the designers desire. Pulse-based UWB systems, being the more common method associated with the term "UWB radar", are described here. A pulse-based radar system transmits very short pulses of electromagnetic energy, typically only a few waves or less.
Radar engineering is the design of technical aspects pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment.