Search results
Results from the WOW.Com Content Network
Radar is a system that uses radio waves to determine the distance (), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method [1] used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
The radar "looks" with the looking angle θ (or so called off-nadir angle). The angle α between x-axis and the line of sight (LOS) is called cone angle, the angle φ between the x-axis and the projection of the line of sight to the (x; y)-plane is called azimuth angle. Cone- and azimuth angle are related by cosα = cosφ ∙ cosε.
Monopulse radar is a radar system that uses additional encoding of the radio signal to provide accurate directional information. The name refers to its ability to extract range and direction from a single signal pulse. Monopulse radar avoids problems seen in conical scanning radar systems, which can be confused by rapid changes in signal strength.
In order to build up a discernible echo, most radar systems emit pulses continuously and the repetition rate of these pulses is determined by the role of the system. An echo from a target will therefore be 'painted' on the display or integrated within the signal processor every time a new pulse is transmitted, reinforcing the return and making ...
Radar engineering is the design of technical aspects pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment.
An ATC ground station consists of two radar systems and their associated support components. The most prominent component is the PSR. It is also referred to as skin paint radar because it shows not synthetic or alpha-numeric target symbols, but bright (or colored) blips or areas on the radar screen produced by the RF energy reflections from the target's "skin."
The development of systems able to produce short pulses of radio energy was the key advance that allowed modern radar systems to come into existence. By timing the pulses on an oscilloscope, the range could be determined and the direction of the antenna revealed the angular location of the targets. The two, combined, produced a "fix", locating ...
A pulse-based radar system transmits very short pulses of electromagnetic energy, typically only a few waves or less. A very short pulse is, of course, a very rapidly changing signal, and thus occupies a very wide bandwidth. This allows far more accurate measurement of distance, and thus resolution.