Search results
Results from the WOW.Com Content Network
Buffer capacity rises to a local maximum at pH = pK a. The height of this peak depends on the value of pK a. Buffer capacity is negligible when the concentration [HA] of buffering agent is very small and increases with increasing concentration of the buffering agent. [3] Some authors show only this region in graphs of buffer capacity. [2]
heat capacity: joule per kelvin (J⋅K −1) constant of integration: varied depending on context speed of light (in vacuum) 299,792,458 meters per second (m/s) speed of sound: meter per second (m/s) specific heat capacity: joule per kilogram per kelvin (J⋅kg −1 ⋅K −1) viscous damping coefficient kilogram per second (kg/s)
A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ.
Molar heat capacity: c: Heat capacity of a material per unit amount of substance J/(K⋅mol) L 2 M T −2 Θ −1 N −1: intensive Moment of inertia: I: Inertia of an object with respect to angular acceleration kg⋅m 2: L 2 M: extensive, tensor, scalar Optical power: P: Measure of the effective curvature of a lens or curved mirror; inverse of ...
This page was last edited on 6 April 2017, at 05:47 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
The point's name derives from the graph (pictured) that results from plotting the specific heat capacity as a function of temperature (for a given pressure in the above range, in the example shown, at 1 atmosphere), which resembles the Greek letter lambda. The specific heat capacity has a sharp peak as the temperature approaches the lambda point.
The Green Book is a direct successor of the Manual of Symbols and Terminology for Physicochemical Quantities and Units, originally prepared for publication on behalf of IUPAC's Physical Chemistry Division by M. L. McGlashen in 1969. A full history of the Green Book's various editions is provided in the historical introduction to the third edition.