Search results
Results from the WOW.Com Content Network
Structure of a rare monomeric boron hydride, R = i-Pr. [4] The most-studied class of organoboron compounds has the formula BR n H 3−n. These compounds are catalysts, reagents, and synthetic intermediates. The trialkyl and triaryl derivatives feature a trigonal-planar boron center that is typically only weakly Lewis acidic.
This chemical reaction is useful in the organic synthesis of organic compounds. [1] Hydroboration produces organoborane compounds that react with a variety of reagents to produce useful compounds, such as alcohols, amines, or alkyl halides. The most widely known reaction of the organoboranes is oxidation to produce alcohols from alkenes.
Alpine borane is the commercial name for an organoboron compound that is used in organic synthesis. It is a colorless liquid, although it is usually encountered as a solution. A range of alkyl-substituted borane are specialty reagents in organic synthesis. Two such reagents that are closely related to Alpine borane are 9-BBN and ...
The origin of selectivity for aliphatic C–H borylation using rhodium catalysts was probed using a type of mechanistic study called hydrogen–deuterium exchange. H/D exchanged showed that regioselectivity of the overall process shown below results from selective cleavage of primary over secondary C–H bonds and selective functionalization of ...
The [BAr F 4] − anion with four fluorinated aryl groups distributed tetrahedrally about a central boron atom. Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate is an anion with chemical formula [{3,5-(CF 3) 2 C 6 H 3} 4 B] −, which is commonly abbreviated as [BAr F 4] −, indicating the presence of fluorinated aryl (Ar F) groups.
Bis(pinacolato)diboron is a covalent compound containing two boron atoms and two pinacolato ligands. It has the formula [(CH 3) 4 C 2 O 2 B] 2; the pinacol groups are sometimes abbreviated as "pin", so the structure is sometimes represented as B 2 pin 2. It is a colourless solid that is soluble in organic solvents.
Diisopinocampheylborane is an organoborane that is useful for asymmetric synthesis. This colourless solid is the precursor to a range of related reagents. The compound was reported in 1961 by Zweifel and Brown in a pioneering demonstration of asymmetric synthesis using boranes. The reagent is mainly used for the synthesis of chiral secondary ...
The boron reagent is converted to boric acid. The reaction was originally described by H.C. Brown in 1957 for the conversion of 1-hexene into 1-hexanol. [3] Hexanol synthesis. Knowing that the group containing the boron will be replaced by a hydroxyl group, it can be seen that the initial hydroboration step determines the regioselectivity.