Search results
Results from the WOW.Com Content Network
In addition to the two primary forms of content, the PhysicsOverflow community also welcomes discussions on unsolved problems, and hosts a chat section for discussions on topics generally of interest to physicists and students of physics, such as those related to recent events in physics, physics academia, and the publishing process. [2]
An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum physics might correspond to experienced reality. [3] Decoherence calculations can be done in any interpretation of quantum mechanics, since those calculations are an application of the standard mathematical tools of quantum theory.
The following is a list of notable unsolved problems grouped into broad areas of physics. [1]Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.
In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]
Water can be added intermittently to the bucket, which leaks out at a constant rate until empty, and will also overflow when full. The leaky bucket is an algorithm based on an analogy of how a bucket with a constant leak will overflow if either the average rate at which water is poured in exceeds the rate at which the bucket leaks or if more ...
Stack Exchange is a network of question-and-answer (Q&A) websites on topics in diverse fields, each site covering a specific topic, where questions, answers, and users are subject to a reputation award process.
Energy may be released from a potential well if sufficient energy is added to the system such that the local maximum is surmounted. In quantum physics, potential energy may escape a potential well without added energy due to the probabilistic characteristics of quantum particles; in these cases a particle may be imagined to tunnel through the walls of a potential well.
Some trajectories of a particle in a box according to Newton's laws of classical mechanics (A), and according to the Schrödinger equation of quantum mechanics (B–F). In (B–F), the horizontal axis is position, and the vertical axis is the real part (blue) and imaginary part (red) of the wave function.