enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Its Euler characteristic is 0, by the product property. More generally, any compact parallelizable manifold, including any compact Lie group, has Euler characteristic 0. [13] The Euler characteristic of any closed odd-dimensional manifold is also 0. [14] The case for orientable examples is a corollary of Poincaré duality.

  3. Real projective plane - Wikipedia

    en.wikipedia.org/wiki/Real_projective_plane

    It has Euler characteristic 1, hence a demigenus (non-orientable genus, Euler genus) of 1. The topological real projective plane can be constructed by taking the (single) edge of a Möbius strip and gluing it to itself in the correct direction, or by gluing the edge to a disk. Alternately, the real projective plane can be constructed by ...

  4. Real projective space - Wikipedia

    en.wikipedia.org/wiki/Real_projective_space

    is called the real projective line, which is topologically equivalent to a circle. ⁠ ⁠ is called the real projective plane.This space cannot be embedded in ⁠ ⁠.It can however be embedded in ⁠ ⁠ and can be immersed in ⁠ ⁠ (see here).

  5. Complex projective space - Wikipedia

    en.wikipedia.org/wiki/Complex_projective_space

    The Euler characteristic of CP n is therefore n + 1. By Poincaré duality the same is true for the ranks of the cohomology groups . In the case of cohomology, one can go further, and identify the graded ring structure, for cup product ; the generator of H 2 ( CP n , Z ) is the class associated to a hyperplane , and this is a ring generator, so ...

  6. Uniformization theorem - Wikipedia

    en.wikipedia.org/wiki/Uniformization_theorem

    The classification is consistent with the Gauss–Bonnet theorem, which implies that for a closed surface with constant curvature, the sign of that curvature must match the sign of the Euler characteristic. The Euler characteristic is equal to 2 – 2g, where g is the genus of the 2-manifold, i.e. the number of "holes".

  7. Klein bottle - Wikipedia

    en.wikipedia.org/wiki/Klein_bottle

    A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.

  8. Riemann–Hurwitz formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hurwitz_formula

    In calculating the Euler characteristic of S′ we notice the loss of e P − 1 copies of P above π(P) (that is, in the inverse image of π(P)). Now let us choose triangulations of S and S′ with vertices at the branch and ramification points, respectively, and use these to compute the Euler characteristics.

  9. Homology (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Homology_(mathematics)

    Homology theory can be said to start with the Euler polyhedron formula, or Euler characteristic. [16] This was followed by Riemann's definition of genus and n-fold connectedness numerical invariants in 1857 and Betti's proof in 1871 of the independence of "homology numbers" from the choice of basis. [17]