Search results
Results from the WOW.Com Content Network
Quantum dot laser: wide range. Medicine (laser scalpel, optical coherence tomography), display technologies (projection, laser TV), spectroscopy and telecommunications. Quantum well laser: 0.4-20 μm, depending on active region material. Telecommunications: Hybrid silicon laser: Mid-infrared: Low cost silicon integrated optical communications
A red dot sight is a common classification [1] for a non-magnifying reflector (or reflex) sight that provides an illuminated red dot to the user as a point of aim. A standard design uses a red light-emitting diode (LED) at the focus of collimating optics , which generates a dot-style illuminated reticle that stays in alignment with the firearm ...
Singaporean soldier aiming a SAR 21 with laser sight. A laser sight is a device attached or integral to a firearm to aid target acquisition. Unlike optical and iron sights where the user looks through the device to aim at the target, laser sights project a beam onto the target, providing a visual reference point.
Most laser sights use a red laser diode. Others use an infrared diode to produce a dot invisible to the naked human eye but detectable with night vision devices. The firearms adaptive target acquisition module LLM01 laser light module combines visible and infrared laser diodes. In the late 1990s, green diode pumped solid state laser (DPSS ...
There are also sights that actively project an illuminated point of aim (a.k.a. "hot spot") onto the target itself so it can be observed by anyone with a direct view, such as laser sights and infrared illuminators on some night vision devices, [citation needed] as well as augmented or even virtual reality-enabled digital cameras ("smart scopes ...
The laser sight produces an infrared beam that is visible only through an NVD and aids with aiming. [3] Some night vision devices are made to be mounted to firearms. These can be used in conjunction with weapon sights or standalone; some thermal weapon sights have been designed to provide similar capabilities.
Dispersion: two sinusoids propagating at different speeds make a moving interference pattern. The red dot moves with the phase velocity, and the green dots propagate with the group velocity. In this case, the phase velocity is twice the group velocity. The red dot overtakes two green dots, when moving from the left to the right of the figure.
Changing frequencies or dot patterns are also commonly used. These systems have the advantage that the link between the launcher and missile cannot easily be broken or jammed. But, they have a disadvantage because the guidance signal may be detected by the target. Examples include the laser-guided RBS 70 SAM and 9M120 Svir ATGM.