Search results
Results from the WOW.Com Content Network
In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. [1] The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A.
The rank of a symmetry group is closely related to the complexity of the object (a molecule, a crystal structure) being under the action of the group. If G is a crystallographic point group, then rank(G) is up to 3. [9] If G is a wallpaper group, then rank(G) = 2 to 4. The only wallpaper-group type of rank 4 is p2mm. [10]
To qualify as an abelian group, the set and operation, (,), must satisfy four requirements known as the abelian group axioms (some authors include in the axioms some properties that belong to the definition of an operation: namely that the operation is defined for any ordered pair of elements of A, that the result is well-defined, and that the ...
Pages in category "Abelian group theory" The following 37 pages are in this category, out of 37 total. ... Rank of an abelian group; S. Slender group; T.
is an abelian group NS(V), called the Néron–Severi group of V. This is a finitely-generated abelian group by the Néron–Severi theorem, which was proved by Severi over the complex numbers and by Néron over more general fields. In other words, the Picard group fits into an exact sequence
An object in Ab is injective if and only if it is a divisible group; it is projective if and only if it is a free abelian group. The category has a projective generator (Z) and an injective cogenerator (Q/Z). Given two abelian groups A and B, their tensor product A⊗B is defined; it is again an abelian group.
Every elementary abelian p-group is a vector space over the prime field with p elements, and conversely every such vector space is an elementary abelian group. By the classification of finitely generated abelian groups, or by the fact that every vector space has a basis, every finite elementary abelian group must be of the form (Z/pZ) n for n a ...
A representation of a group G over a field k is a module over the group ring k[G]. If M is a left R-module, then the action of an element r in R is defined to be the map M → M that sends each x to rx (or xr in the case of a right module), and is necessarily a group endomorphism of the abelian group (M, +).