enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Well-order - Wikipedia

    en.wikipedia.org/wiki/Well-order

    In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the ordering is then called a well-ordered set (or woset). [1]

  3. Well-ordering theorem - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_theorem

    In second-order logic, however, the well-ordering theorem is strictly stronger than the axiom of choice: from the well-ordering theorem one may deduce the axiom of choice, but from the axiom of choice one cannot deduce the well-ordering theorem. [7] There is a well-known joke about the three statements, and their relative amenability to intuition:

  4. Normal order - Wikipedia

    en.wikipedia.org/wiki/Normal_order

    Normal ordering of bosonic operator functions (^), with occupation number operator ^ = ^ ^ † ^, can be accomplished using (falling) factorial powers ^ _ = ^ (^) (^ +) and Newton series instead of Taylor series: It is easy to show [1] that factorial powers ^ _ are equal to normal-ordered (raw) powers ^ and are therefore normal ordered by ...

  5. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Then, by the well-ordering principle, there is a least element ; cannot be prime since a prime number itself is considered a length-one product of primes. By the definition of non-prime numbers, n {\displaystyle n} has factors a , b {\displaystyle a,b} , where a , b {\displaystyle a,b} are integers greater than one and less than n ...

  6. Axiom of choice - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_choice

    The most important among them are Zorn's lemma and the well-ordering theorem. In fact, Zermelo initially introduced the axiom of choice in order to formalize his proof of the well-ordering theorem. Set theory. Tarski's theorem about choice: For every infinite set A, there is a bijective map between the sets A and A×A.

  7. Well-founded relation - Wikipedia

    en.wikipedia.org/wiki/Well-founded_relation

    If the order is a total order then it is called a well-order. In set theory, a set x is called a well-founded set if the set membership relation is well-founded on the transitive closure of x. The axiom of regularity, which is one of the axioms of Zermelo–Fraenkel set theory, asserts that all sets are well-founded. A relation R is converse ...

  8. 26 Snacks That Sound Wrong But Might Be So Right - AOL

    www.aol.com/lifestyle/26-snacks-sound-wrong...

    Warning: your taste buds are about to question everything they thought they knew about snacking. We've rounded up 26 edible adventures for people who scroll past normal chips thinking "boring" and ...

  9. Ordinal number - Wikipedia

    en.wikipedia.org/wiki/Ordinal_number

    Every well-ordered set (S,<) is order-isomorphic to the set of ordinals less than one specific ordinal number under their natural ordering. This canonical set is the order type of ( S ,<). Essentially, an ordinal is intended to be defined as an isomorphism class of well-ordered sets: that is, as an equivalence class for the equivalence relation ...