enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero element - Wikipedia

    en.wikipedia.org/wiki/Zero_element

    In mathematics, the zero ideal in a ring is the ideal {} consisting of only the additive identity (or zero element). The fact that this is an ideal follows directly from the definition. The fact that this is an ideal follows directly from the definition.

  3. Absorbing element - Wikipedia

    en.wikipedia.org/wiki/Absorbing_element

    A zero element (or an absorbing/annihilating element) is an element z such that for all s in S, z • s = s • z = z. This notion can be refined to the notions of left zero , where one requires only that z • s = z , and right zero , where s • z = z .

  4. Null (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Null_(mathematics)

    In a vector space, the null vector is the neutral element of vector addition; depending on the context, a null vector may also be a vector mapped to some null by a function under consideration (such as a quadratic form coming with the vector space, see null vector, a linear mapping given as matrix product or dot product, [4] a seminorm in a ...

  5. 0 - Wikipedia

    en.wikipedia.org/wiki/0

    The role of 0 as additive identity generalizes beyond elementary algebra. In abstract algebra, 0 is commonly used to denote a zero element, which is the identity element for addition (if defined on the structure under consideration) and an absorbing element for multiplication (if defined). (Such elements may also be called zero elements.)

  6. Initial and terminal objects - Wikipedia

    en.wikipedia.org/wiki/Initial_and_terminal_objects

    The zero ring consisting only of a single element 0 = 1 is a terminal object. In Rig, the category of rigs with unity and unity-preserving morphisms, the rig of natural numbers N is an initial object. The zero rig, which is the zero ring, consisting only of a single element 0 = 1 is a terminal object.

  7. Empty set - Wikipedia

    en.wikipedia.org/wiki/Empty_set

    In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. [1] Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set , while in other theories, its existence can be deduced.

  8. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. [1] [2] For example, 0 is an identity element of the addition of real numbers. This concept is used in algebraic structures such as groups and rings.

  9. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function, is a member of the domain of such that () vanishes at ; that is, the function attains the value of 0 at , or equivalently, is a solution to the equation () =. [1]