Search results
Results from the WOW.Com Content Network
Protein structure databases are critical for many efforts in computational biology such as structure based drug design, both in developing the computational methods used and in providing a large experimental dataset used by some methods to provide insights about the function of a protein.
Discovering the tertiary structure of a protein, or the quaternary structure of its complexes, can provide important clues about how the protein performs its function and how it can be affected, i.e. in drug design. As proteins are too small to be seen under a light microscope, other methods have to be employed to determine their structure.
Protein primary structure is the linear sequence of amino acids in a peptide or protein. [1] By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthesis is most commonly performed by ribosomes in cells. Peptides can also be synthesized in the ...
In molecular biology, a protein domain is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure. Many proteins consist of several domains, and a domain may appear in a variety of different proteins.
The correct three-dimensional structure is essential to function, although some parts of functional proteins may remain unfolded, [3] indicating that protein dynamics are important. Failure to fold into a native structure generally produces inactive proteins, but in some instances, misfolded proteins have modified or toxic functionality.
At the top level are all alpha proteins (domains consisting of alpha helices), all beta proteins (domains consisting of beta sheets), and mixed alpha helix/beta sheet proteins. While most proteins adopt a single stable fold, a few proteins can rapidly interconvert between one or more folds. These are referred to as metamorphic proteins. [5]
α/β proteins are a class of structural domains in which the secondary structure is composed of alternating α-helices and β-strands along the backbone. The β-strands are therefore mostly parallel. [4] Common examples include the flavodoxin fold, the TIM barrel and leucine-rich-repeat (LRR) proteins such as ribonuclease inhibitor.
Some protein dynamics [8] and conformational changes of the protein structure may also be conserved, as is seen in the serpin superfamily. [9] Consequently, protein tertiary structure can be used to detect homology between proteins even when no evidence of relatedness remains in their sequences.