enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confocal microscopy - Wikipedia

    en.wikipedia.org/wiki/Confocal_microscopy

    Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]

  3. Fluorescence microscope - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_microscope

    [1] [2] A fluorescence microscope is any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image. [3]

  4. Optical microscope - Wikipedia

    en.wikipedia.org/wiki/Optical_microscope

    The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.

  5. Microscopy - Wikipedia

    en.wikipedia.org/wiki/Microscopy

    Antonie van Leeuwenhoek (1632–1723). The field of microscopy (optical microscopy) dates back to at least the 17th-century.Earlier microscopes, single lens magnifying glasses with limited magnification, date at least as far back as the wide spread use of lenses in eyeglasses in the 13th century [2] but more advanced compound microscopes first appeared in Europe around 1620 [3] [4] The ...

  6. Optical transfer function - Wikipedia

    en.wikipedia.org/wiki/Optical_transfer_function

    As an example, the figure on the right shows the 3D point-spread function in object space of a wide-field microscope (a) alongside that of a confocal microscope (c). Although the same microscope objective with a numerical aperture of 1.49 is used, it is clear that the confocal point spread function is more compact both in the lateral dimensions ...

  7. Fluorescence-lifetime imaging microscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorescence-lifetime...

    The method uses a light source that is pulsed or modulated at high frequency (up to 500 MHz) such as an LED, diode laser or a continuous wave source combined with an electro-optic modulator or an acousto-optic modulator. The fluorescence is (a.) demodulated and (b.) phase shifted; both quantities are related to the characteristic decay times of ...

  8. Point spread function - Wikipedia

    en.wikipedia.org/wiki/Point_spread_function

    By virtue of the linearity property of optical non-coherent imaging systems, i.e., . Image(Object 1 + Object 2) = Image(Object 1) + Image(Object 2). the image of an object in a microscope or telescope as a non-coherent imaging system can be computed by expressing the object-plane field as a weighted sum of 2D impulse functions, and then expressing the image plane field as a weighted sum of the ...

  9. STED microscopy - Wikipedia

    en.wikipedia.org/wiki/STED_microscopy

    As an example, STED was used for the elucidation of protein structure analysis at a sub-organelle level. The common proof of this level of study is the observation of cytoskeletal filaments. In addition, neurofilaments, actin, and tubulin are often used to compare the resolving power of STED and confocal microscopes. [20] [21] [22]