Search results
Results from the WOW.Com Content Network
The dual of a non-convex polyhedron is also a non-convex polyhedron. [2] ( By contraposition.) There are ten non-convex isotoxal polyhedra based on the quasiregular octahedron, cuboctahedron, and icosidodecahedron: the five (quasiregular) hemipolyhedra based on the quasiregular octahedron, cuboctahedron, and icosidodecahedron, and their five (infinite) duals:
A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid. For instance, while all the cross-sections of a ball are disks, [2] the cross-sections of a cube depend on how the cutting plane is related to the ...
In this respect, ideal polyhedra are different from Euclidean polyhedra (and from their Euclidean Klein models): for instance, on a Euclidean cube, any geodesic can cross at most two edges incident to a single vertex consecutively, before crossing a non-incident edge, but geodesics on the ideal cube are not limited in this way. [26]
For instance, the truncated icosahedron (the familiar soccerball) is not isotoxal, as it has two edge types: hexagon-hexagon and hexagon-pentagon, and it is not possible for a symmetry of the solid to move a hexagon-hexagon edge onto a hexagon-pentagon edge. An isotoxal polyhedron has the same dihedral angle for all edges. The dual of a convex ...
Fuller (1975) used these 6 great circles, along with 15 and 10 others in two other polyhedra to define his 31 great circles of the spherical icosahedron. [ 6 ] The long radius (center to vertex) of the icosidodecahedron is in the golden ratio to its edge length; thus its radius is φ if its edge length is 1, and its edge length is 1 / φ ...
Other than rhombic triacontahedron, it is one of two Catalan solids that each have the property that their isometry groups are edge-transitive; the other convex polyhedron classes being the five Platonic solids and the other two Archimedean solids: its dual polyhedron and icosidodecahedron. Denoting by a the edge length of a rhombic dodecahedron,
A central cross section of a regular tetrahedron is a square. The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny.
The ten-of-diamonds can be dissected in an octagonal cross-section between the two rhombic faces. It is a decahedron with 12 vertices, 20 edges, and 10 faces (4 triangles, 4 trapezoids, 1 rhombus, and 1 isotoxal octagon). Michael Goldberg labels this polyhedron 10-XXV, the 25th in a list of space-filling decahedra. [2]