Search results
Results from the WOW.Com Content Network
The equivalent circuit for Z-parameters of a two-port network. The equivalent circuit for Z-parameters of a reciprocal two-port network. The Z-parameter matrix for the two-port network is probably the most common. In this case the relationship between the port currents, port voltages and the Z-parameter matrix is given by:
A Y-parameter matrix describes the behaviour of any linear electrical network that can be regarded as a black box with a number of ports.A port in this context is a pair of electrical terminals carrying equal and opposite currents into and out of the network, and having a particular voltage between them.
Figure 1: Example two-port network with symbol definitions. Notice the port condition is satisfied: the same current flows into each port as leaves that port.. In electronics, a two-port network (a kind of four-terminal network or quadripole) is an electrical network (i.e. a circuit) or device with two pairs of terminals to connect to external circuits.
The characteristic impedance or surge impedance (usually written Z 0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a wave travelling in one direction along the line in the absence of reflections in the other direction.
The CIE XYZ color space was deliberately designed so that the Y parameter is also a measure of the luminance of a color. The chromaticity is then specified by the two derived parameters x and y, two of the three normalized values being functions of all three tristimulus values X, Y, and Z: [14] [further explanation needed]
However, only two of these can be extended beyond two ports to an arbitrary number of ports. These two are the z-parameters and their inverse, the admittance parameters or y-parameters. [5] Voltage divider circuit. To understand the relationship between port voltages and currents and inputs and outputs, consider the simple voltage divider circuit.
Z i 2 is facing Z i 2 to provide matching impedances Showing how a 'Π' section is made from two cascaded 'L' half-sections. Z i 1 is facing Z i 1 to provide matching impedances. As an example, the derivation of the image impedances of a simple 'L' network is given below. The 'L' network consists of a series impedance, Z, and a shunt admittance, Y.
Therefore, transformations P 1 to Q 1 and P 3 to Q 3 are from the Z Smith chart to the Y Smith chart and transformation Q 2 to P 2 is from the Y Smith chart to the Z Smith chart. The following table shows the steps taken to work through the remaining components and transformations, returning eventually back to the centre of the Smith chart and ...