enow.com Web Search

  1. Ad

    related to: how to calculate magnification on eyepiece camera lens

Search results

  1. Results from the WOW.Com Content Network
  2. Magnification - Wikipedia

    en.wikipedia.org/wiki/Magnification

    Stepwise magnification by 6% per frame into a 39-megapixel image. In the final frame, at about 170x, an image of a bystander is seen reflected in the man's cornea. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a size ratio called optical magnification.

  3. Eye relief - Wikipedia

    en.wikipedia.org/wiki/Eye_relief

    The eye relief of an optical instrument (such as a telescope, a microscope, or binoculars) is the distance from the last surface of an eyepiece within which the user's eye can obtain the full viewing angle. If a viewer's eye is outside this distance, a reduced field of view will be obtained.

  4. Eyepiece - Wikipedia

    en.wikipedia.org/wiki/Eyepiece

    (The eyepiece and the eye together make an image of the image created by the objective, on the retina of the eye.) The amount of magnification depends on the focal length of the eyepiece. An eyepiece consists of several "lens elements" in a housing, with a "barrel" on one end. The barrel is shaped to fit in a special opening of the instrument ...

  5. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    In microscopy, NA is important because it indicates the resolving power of a lens. The size of the finest detail that can be resolved (the resolution) is proportional to ⁠ λ / 2NA ⁠, where λ is the wavelength of the light. A lens with a larger numerical aperture will be able to visualize finer details than a lens with a smaller numerical ...

  6. f-number - Wikipedia

    en.wikipedia.org/wiki/F-number

    where N is the uncorrected f-number, NA i is the image-space numerical aperture of the lens, | | is the absolute value of the lens's magnification for an object a particular distance away, and P is the pupil magnification. Since the pupil magnification is seldom known it is often assumed to be 1, which is the correct value for all symmetric lenses.

  7. Infinity focus - Wikipedia

    en.wikipedia.org/wiki/Infinity_focus

    The image is formed at the focal point of the lens. In simple two lens systems such as a refractor telescope, the object at infinity forms an image at the focal point of the objective lens, which is subsequently magnified by the eyepiece. The magnification is equal to the focal length of the objective lens divided by the focal length of the ...

  8. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    For a single lens surrounded by a medium of refractive index n = 1, the locations of the principal points H and H ′ with respect to the respective lens vertices are given by the formulas = ′ = (), where f is the focal length of the lens, d is its thickness, and r 1 and r 2 are the radii of curvature of its surfaces. Positive signs indicate ...

  9. Angular resolution - Wikipedia

    en.wikipedia.org/wiki/Angular_resolution

    If the lens is focusing a beam of light with a finite extent (e.g., a laser beam), the value of D corresponds to the diameter of the light beam, not the lens. [Note 1] Since the spatial resolution is inversely proportional to D, this leads to the slightly surprising result that a wide beam of light may be focused on a smaller spot than a narrow ...

  1. Ad

    related to: how to calculate magnification on eyepiece camera lens