Search results
Results from the WOW.Com Content Network
Do Carmo's main research interests were Riemannian geometry and the differential geometry of surfaces. [3]In particular, he worked on rigidity and convexity of isometric immersions, [26] [27] stability of hypersurfaces [28] [29] and of minimal surfaces, [30] [31] topology of manifolds, [32] isoperimetric problems, [33] minimal submanifolds of a sphere, [34] [35] and manifolds of constant mean ...
In the mathematical field of differential geometry, any (pseudo-)Riemannian metric determines a certain class of paths known as geodesics. Beltrami's theorem, named for Italian mathematician Eugenio Beltrami, is a result on the inverse problem of determining a (pseudo-)Riemannian metric from its geodesics.
Helgason, Sigurdur (1978), Differential geometry, Lie groups and symmetric spaces, Pure and Applied Mathematics 80, New York: Academic Press, pp. xvi+628, ISBN 0-12-338460-5. Lang, Serge (1999), Fundamentals of differential geometry, Graduate Texts in Mathematics, vol. 191, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98593-0, MR 1666820
Wire and plaster models illustrating the differential geometry and curvature of curves and surfaces, including surfaces of revolution, Dupin cyclides, helicoids, and minimal surfaces including the Enneper surface, with commentary by M. P. do Carmo, G. Fischer, U. Pinkall, H. and Reckziegel. [1] [3]
In the mathematical field of differential geometry, the fundamental theorem of surface theory deals with the problem of prescribing the geometric data of a submanifold of Euclidean space. Originally proved by Pierre Ossian Bonnet in 1867, it has since been extended to higher dimensions and non-Euclidean contexts.
In differential geometry, Fenchel's theorem is an inequality on the total absolute curvature of a closed smooth space curve, stating that it is always at least . Equivalently, the average curvature is at least 2 π / L {\displaystyle 2\pi /L} , where L {\displaystyle L} is the length of the curve.
Consider a curve in a manifold ¯, parametrized by arclength, with unit tangent vector = /.Its curvature is the norm of the covariant derivative of : = ‖ / ‖.If lies on , the geodesic curvature is the norm of the projection of the covariant derivative / on the tangent space to the submanifold.
In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non- umbilic point of a surface embedded in Euclidean space .