Search results
Results from the WOW.Com Content Network
In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.
RExcel is an add-on for Microsoft Excel that allows access to the statistics package R from within Excel. It uses the statconnDCOM server and, for certain configurations, the room package. RExcel runs on Microsoft Windows (XP, Vista, or 7), with Excel 2003, 2007, 2010, and 2013. [1]
A typical measure of bias of forecasting procedure is the arithmetic mean or expected value of the forecast errors, but other measures of bias are possible. For example, a median-unbiased forecast would be one where half of the forecasts are too low and half too high: see Bias of an estimator .
In statistics and management science, a tracking signal monitors any forecasts that have been made in comparison with actuals, and warns when there are unexpected departures of the outcomes from the forecasts. Forecasts can relate to sales, inventory, or anything pertaining to an organization's future demand.
From the definition of ¯ as the average of the jackknife replicates one could try to calculate explicitly. The bias is a trivial calculation, but the variance of x ¯ j a c k {\displaystyle {\bar {x}}_{\mathrm {jack} }} is more involved since the jackknife replicates are not independent.
It is used primarily as a visual aid for detecting bias or systematic heterogeneity. A symmetric inverted funnel shape arises from a ‘well-behaved’ data set, in which publication bias is unlikely. An asymmetric funnel indicates a relationship between treatment effect estimate and study precision.
Download QR code; Print/export ... are produced by a biased estimator, then the mean signed difference is a useful tool to understand the direction of the estimator's ...
Detection bias occurs when a phenomenon is more likely to be observed for a particular set of study subjects. For instance, the syndemic involving obesity and diabetes may mean doctors are more likely to look for diabetes in obese patients than in thinner patients, leading to an inflation in diabetes among obese patients because of skewed detection efforts.