enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cauchy product - Wikipedia

    en.wikipedia.org/wiki/Cauchy_product

    The Cauchy product may apply to infinite series [1] [2] or power series. [3] [4] When people apply it to finite sequences [5] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution). Convergence issues are discussed in the next section.

  3. Cauchy–Hadamard theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Hadamard_theorem

    In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, [1] but remained relatively unknown until Hadamard rediscovered it. [2]

  4. Cauchy's integral formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_integral_formula

    In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis.It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function.

  5. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    The power series method will give solutions only to initial value problems (opposed to boundary value problems), this is not an issue when dealing with linear equations since the solution may turn up multiple linearly independent solutions which may be combined (by superposition) to solve boundary value problems as well. A further restriction ...

  6. Function of several complex variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several...

    In polydisks, the Cauchy's integral formula holds and the power series expansion of holomorphic functions is defined, but polydisks and open unit balls are not biholomorphic mapping because the Riemann mapping theorem does not hold, and also, polydisks was possible to separation of variables, but it doesn't always hold for any domain.

  7. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.

  8. Cauchy–Kovalevskaya theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Kovalevskaya_theorem

    The corresponding scalar Cauchy problem involving this function instead of the A i 's and b has an explicit local analytic solution. The absolute values of its coefficients majorize the norms of those of the original problem; so the formal power series solution must converge where the scalar solution converges.

  9. Cauchy's integral theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_integral_theorem

    If one assumes that the partial derivatives of a holomorphic function are continuous, the Cauchy integral theorem can be proven as a direct consequence of Green's theorem and the fact that the real and imaginary parts of = + must satisfy the Cauchy–Riemann equations in the region bounded by , and moreover in the open neighborhood U of this ...