Search results
Results from the WOW.Com Content Network
Separately excited DC motors are suitable for control applications because of separate field and armature circuit. [1] Two ways to control DC separately excited motors are: Armature Control and Field Control. [2] A DC motor consists of two parts: a rotor and a stator. [3] The stator consists of field windings while the rotor (also called the ...
A DC armature of a miniature motor (or generator) An example of a triple-T armature A partially-constructed DC armature, showing the (incomplete) windings. In electrical engineering, the armature is the winding (or set of windings) of an electric machine which carries alternating current. [1]
A compound DC motor connects the armature and fields windings in a shunt and a series combination to give it characteristics of both a shunt and a series DC motor. [5] This motor is used when both a high starting torque and good speed regulation is needed. The motor can be connected in two arrangements: cumulatively or differentially.
The rotary converter can be thought of as a motor–generator, where the two machines share a single rotating armature and set of field coils. The basic construction of the rotary converter consists of a DC generator (dynamo) with a set of slip rings tapped into its rotor windings at evenly spaced intervals. When a dynamo is spun the electric ...
The field coils can be mounted on either the rotor or the stator, depending on whichever method is the most cost-effective for the device design. In a brushed DC motor the field is static but the armature current must be commutated, so as to continually rotate
A growler is an electrical device primarily used for testing a motor for shorted coils. A growler consists of a coil of wire wrapped around an iron core and connected to a source of alternating current. When placed on the armature or stator core of a motor the growler acts as the primary of a transformer and the armature coils act as the ...
A DC motor's speed and torque characteristics vary according to three different magnetization sources, separately excited field, self-excited field or permanent-field, which are used selectively to control the motor over the mechanical load's range. Self-excited field motors can be series, shunt, or a compound wound connected to the armature.
In vector control, an AC induction or synchronous motor is controlled under all operating conditions like a separately excited DC motor. [21] That is, the AC motor behaves like a DC motor in which the field flux linkage and armature flux linkage created by the respective field and armature (or torque component) currents are orthogonally aligned such that, when torque is controlled, the field ...