Ad
related to: parabola example equation
Search results
Results from the WOW.Com Content Network
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
A variable may denote an unknown number that has to be determined; in which case, it is called an unknown; for example, in the quadratic equation ax 2 + bx + c = 0, the variables a, b, c are parameters, and x is the unknown. Sometimes the same symbol can be used to denote both a variable and a constant, that is a well defined mathematical object.
This is the equation of a parabola, so the path is parabolic. The axis of the parabola is vertical. If the projectile's position (x,y) and launch angle (θ or α) are known, the initial velocity can be found solving for v 0 in the afore-mentioned parabolic equation:
While a parabolic arch may resemble a catenary arch, a parabola is a quadratic function while a catenary is the hyperbolic cosine, cosh(x), a sum of two exponential functions. One parabola is f(x) = x 2 + 3x − 1, and hyperbolic cosine is cosh(x) = e x + e −x / 2 . The curves are unrelated.
The equation of a parabola is, up to similarity, translating so that the vertex is at the origin and rotating so that the axis is horizontal, x = y 2. In polar coordinates this becomes = . The inverse curve then has equation
If this transformation is performed on each conic in an orthogonal net of confocal ellipses and hyperbolas, the limit is an orthogonal net of confocal parabolas facing opposite directions. Every parabola with focus at the origin and x-axis as its axis of symmetry is the locus of points satisfying the equation
Ad
related to: parabola example equation