Search results
Results from the WOW.Com Content Network
Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution. Because the chemical equilibrium between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface.
The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a circular tube.
The Starling principle holds that fluid movement across a semi-permeable blood vessel such as a capillary or small venule is determined by the hydrostatic pressures and colloid osmotic pressures (oncotic pressure) on either side of a semipermeable barrier that sieves the filtrate, retarding larger molecules such as proteins from leaving the blood stream.
The difference between them and the closely related Euler equations is that Navier–Stokes equations take viscosity into account while the Euler equations model only inviscid flow. As a result, the Navier–Stokes are an elliptic equation and therefore have better analytic properties, at the expense of having less mathematical structure (e.g ...
The resulting flow is termed electroosmotic flow. In CEC positive ions of the electrolyte added along with the analyte accumulate in the electrical double layer of the particles of the column packing on application of an electric field they move towards the cathode and drag the liquid mobile phase with them.
An interesting phenomena, capillary rise of water (as pictured to the right) provides a good example of how these properties come together to drive flow through a capillary tube and how these properties are measured in a system. There are two general equations that describe the force up and force down relationship of two fluids in equilibrium.
In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids.As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.