Search results
Results from the WOW.Com Content Network
In chemistry, a steady state is a more general situation than dynamic equilibrium. While a dynamic equilibrium occurs when two or more reversible processes occur at the same rate, and such a system can be said to be in a steady state, a system that is in a steady state may not necessarily be in a state of dynamic equilibrium, because some of ...
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
In chemistry, a dynamic equilibrium exists once a reversible reaction occurs. Substances transition between the reactants and products at equal rates, meaning there is no net change. Reactants and products are formed at such a rate that the concentration of neither changes. It is a particular example of a system in a steady state.
Systems can be defined as dynamic or non-dynamic in an equilibrium state. Besides the usual transient condition, where at least one quantity changes with time, stable dynamic systems may be in a steady state condition or equilibrium state where the system is at rest. [2]
Classical thermodynamics deals with states of dynamic equilibrium.The state of a system at thermodynamic equilibrium is the one for which some thermodynamic potential is minimized (in the absence of an applied voltage), [2] or for which the entropy (S) is maximized, for specified conditions.
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
A steady state, on the other hand, is not necessarily an equilibrium state in the chemical sense. For example, in a radioactive decay chain the concentrations of intermediate isotopes are constant because the rate of production is equal to the rate of decay. It is not a chemical equilibrium because the decay process occurs in one direction only.
This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium. [2] [3]