Search results
Results from the WOW.Com Content Network
Before Newton’s law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature. [6]
One set of tests focuses on effects predicted by general relativity for the behavior of gyroscopes travelling through space. One of these effects, geodetic precession, has been tested with the Lunar Laser Ranging Experiment (high-precision measurements of the orbit of the Moon). Another, which is related to rotating masses, is called frame-dragging
Astronomical observations of the cosmological expansion rate allow the total amount of matter in the universe to be estimated, although the nature of that matter remains mysterious in part. About 90% of all matter appears to be dark matter, which has mass (or, equivalently, gravitational influence), but does not interact electromagnetically and ...
Scientists know that it has been vital to the universe since its beginning, and new discoveries reveal that it could create black holes, cause mass extinctions, and might even have helped to shape life on Earth. Explores if there may be a dark matter universe that could account for all the events that aren't yet definable.
Fully 70% of the matter density in the universe appears to be in the form of dark energy. Twenty-six percent is dark matter. Only 4% is ordinary matter. So less than 1 part in 20 is made out of matter we have observed experimentally or described in the standard model of particle physics. Of the other 96%, apart from the properties just ...
The 12th-century scholar Al-Khazini suggested that the gravity an object contains varies depending on its distance from the centre of the universe (referring to the centre of the Earth). Al-Biruni and Al-Khazini studied the theory of the centre of gravity, and generalized and applied it to three-dimensional bodies.
In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...