enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Huffman coding example.svg - Wikipedia

    en.wikipedia.org/.../File:Huffman_coding_example.svg

    The standard way to represent a signal made of 4 symbols is by using 2 bits/symbol, but the entropy of the source is 1.73 bits/symbol. If this Huffman code is used to represent the signal, then the entropy is lowered to 1.83 bits/symbol; it is still far from the theoretical limit because the probabilities of the symbols are different from negative powers of two.

  3. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).

  4. Shannon–Fano coding - Wikipedia

    en.wikipedia.org/wiki/Shannon–Fano_coding

    For this reason, Shannon–Fano codes are almost never used; Huffman coding is almost as computationally simple and produces prefix codes that always achieve the lowest possible expected code word length, under the constraints that each symbol is represented by a code formed of an integral number of bits. This is a constraint that is often ...

  5. Canonical Huffman code - Wikipedia

    en.wikipedia.org/wiki/Canonical_Huffman_code

    The normal Huffman coding algorithm assigns a variable length code to every symbol in the alphabet. More frequently used symbols will be assigned a shorter code. For example, suppose we have the following non-canonical codebook: A = 11 B = 0 C = 101 D = 100 Here the letter A has been assigned 2 bits, B has 1 bit, and C and D both have 3 bits.

  6. Inductive probability - Wikipedia

    en.wikipedia.org/wiki/Inductive_probability

    A Huffman code must distinguish the 3 cases. The length of each code is based on the frequency of each type of sub expressions. Initially constants are all assigned the same length/probability. Later constants may be assigned a probability using the Huffman code based on the number of uses of the function id in all expressions recorded so far.

  7. Data compression - Wikipedia

    en.wikipedia.org/wiki/Data_compression

    Entropy coding originated in the 1940s with the introduction of Shannon–Fano coding, [31] the basis for Huffman coding which was developed in 1950. [32] Transform coding dates back to the late 1960s, with the introduction of fast Fourier transform (FFT) coding in 1968 and the Hadamard transform in 1969.

  8. HuffPost Data

    data.huffingtonpost.com

    HuffPost Data Visualization, analysis, interactive maps and real-time graphics. Browse, copy and fork our open-source software.; Remix thousands of aggregated polling results.

  9. Shannon–Fano–Elias coding - Wikipedia

    en.wikipedia.org/wiki/Shannon–Fano–Elias_coding

    In information theory, Shannon–Fano–Elias coding is a precursor to arithmetic coding, in which probabilities are used to determine codewords. [1] It is named for Claude Shannon , Robert Fano , and Peter Elias .