enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    In special relativity, time dilation is most simply described in circumstances where relative velocity is unchanging. Nevertheless, the Lorentz equations allow one to calculate proper time and movement in space for the simple case of a spaceship which is applied with a force per unit mass, relative to some reference object in uniform (i.e ...

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Also, the velocities in the directions perpendicular to the frame changes are affected, as shown above. This is due to time dilation, as encapsulated in the dt/dt′ transformation. The V′ y and V′ z equations were both derived by dividing the appropriate space differential (e.g. dy′ or dz′) by the time differential.

  4. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...

  5. Experimental testing of time dilation - Wikipedia

    en.wikipedia.org/wiki/Experimental_testing_of...

    However, approximately 412 muons per hour arrived in Cambridge, resulting in a time dilation factor of 8.8 ± 0.8. Frisch and Smith showed that this is in agreement with the predictions of special relativity: The time dilation factor for muons on Mount Washington traveling at 0.995 c to 0.9954 c is approximately 10.2.

  6. Formulations of special relativity - Wikipedia

    en.wikipedia.org/wiki/Formulations_of_special...

    This theory made many predictions which have been experimentally verified, including the relativity of simultaneity, length contraction, time dilation, the relativistic velocity addition formula, the relativistic Doppler effect, relativistic mass, a universal speed limit, mass–energy equivalence, the speed of causality and the Thomas precession.

  7. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    This frame, the momentarily comoving reference frame, enables application of special relativity to the analysis of accelerated particles. If an inertial observer looks at an accelerating clock, only the clock's instantaneous speed is important when computing time dilation. [9] The converse, however, is not true.

  8. Acceleration (special relativity) - Wikipedia

    en.wikipedia.org/wiki/Acceleration_(special...

    Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation , the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration".

  9. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations.