Ads
related to: difference between exponent and mantissa in math worksheetseducation.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Lesson Plans
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.
The arithmetical difference between two consecutive representable floating-point numbers which have the same exponent is called a unit in the last place (ULP). For example, if there is no representable number lying between the representable numbers 1.45a70c22 hex and 1.45a70c24 hex , the ULP is 2×16 −8 , or 2 −31 .
The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
Then, the fractional part can be formulated as a difference: frac ( x ) = x − ⌊ x ⌋ , x > 0 {\displaystyle \operatorname {frac} (x)=x-\lfloor x\rfloor ,\;x>0} . The fractional part of logarithms , [ 2 ] specifically, is also known as the mantissa ; by contrast with the mantissa, the integral part of a logarithm is called its ...
The part of the representation that contains the significant figures (1.30 or 1.23) is known as the significand or mantissa. The digits in the base and exponent ( 10 3 or 10 −2 ) are considered exact numbers so for these digits, significant figures are irrelevant.
Ads
related to: difference between exponent and mantissa in math worksheetseducation.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama
kutasoftware.com has been visited by 10K+ users in the past month