Search results
Results from the WOW.Com Content Network
Synthesis of an amide with work-up step in red. A concentrated solution of sodium bicarbonate is added to the reaction mixture. This will promote the migration of impurities and byproducts to the aqueous layer and leave the product in the dichloromethane (organic layer). The aqueous and organic layers are allowed to separate.
The organic solvent used must be water-insoluble to observe phase separation and perform an acid-base extraction. [9] Three layers form in the separatory funnel. Often this is a result of insufficient mixing, and light stirring will solve the issue. [9] The boundary between the organic layer and aqueous layer is not observed.
The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent. The reaction is named after its co-discoverer, John E. McMurry.
Typically, this will be to extract organic compounds out of an aqueous phase and into an organic phase, but may also include extracting water-soluble impurities from an organic phase into an aqueous phase. [1] [2] Common extractants may be arranged in increasing order of polarity according to the Hildebrand solubility parameter:
The mechanism of the reaction involves two steps. The first step is a nucleophilic addition to the nitrile with the aid of a polarizing Lewis acid, forming an imine, which is later hydrolyzed during the aqueous workup to yield the final aryl ketone. Hoesch reaction mechanism
A separatory funnel used for liquid–liquid extraction, as evident by the two immiscible liquids.. Liquid–liquid extraction, also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO 2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson. [1] The typical reaction conditions used today were developed by G. A. Kraus.