Search results
Results from the WOW.Com Content Network
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.
The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...
Plücker coordinates allow concise solutions to problems of line geometry in 3 ... a hyperboloid of one sheet is a quadric surface in ... (PDF) (Report ). Shoemake ...
Quadric geometric algebra (QGA) is a geometrical application of the , geometric algebra.This algebra is also known as the , Clifford algebra.QGA is a super-algebra over , conformal geometric algebra (CGA) and , spacetime algebra (STA), which can each be defined within sub-algebras of QGA.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
A surface of general type with the same Betti numbers as a minimal surface not of general type must have the Betti numbers of either a projective plane P 2 or a quadric P 1 ×P 1. Shavel (1978) constructed some "fake quadrics": surfaces of general type with the same Betti numbers as quadrics. Beauville surfaces give further examples.
A quadric, or quadric surface, is a 2-dimensional surface in 3-dimensional space defined as the locus of zeros of a quadratic polynomial. In coordinates x 1 , x 2 , x 3 , the general quadric is defined by the algebraic equation [ 21 ]
In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid made by a plane parallel to the axis of symmetry is a parabola.