Search results
Results from the WOW.Com Content Network
A result is called "deep" if its proof requires concepts and methods that are advanced beyond the concepts needed to formulate the result. For example, the prime number theorem — originally proved using techniques of complex analysis — was once thought to be a deep result until elementary proofs were found. [1]
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
The English language has a number of words that denote specific or approximate quantities that are themselves not numbers. [1] Along with numerals, and special-purpose words like some, any, much, more, every, and all, they are Quantifiers. Quantifiers are a kind of determiner and occur in many constructions with other determiners, like articles ...
2. Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1. In elementary arithmetic, denotes multiplication, and is read as times; for example, 3 × 2. 2.
This following list features abbreviated names of mathematical functions, function-like operators and other mathematical terminology. This list is limited to abbreviations of two or more letters (excluding number sets). The capitalization of some of these abbreviations is not standardized – different authors might use different capitalizations.
The expressions "A includes x" and "A contains x" are also used to mean set membership, although some authors use them to mean instead "x is a subset of A". [2] Logician George Boolos strongly urged that "contains" be used for membership only, and "includes" for the subset relation only.
For example, "or" means "one, the other or both", while, in common language, "both" is sometimes included and sometimes not. Also, a "line" is straight and has zero width. Use of common words with a meaning that is completely different from their common meaning. For example, a mathematical ring is not related to any other meaning of "ring".