Ads
related to: torque on current carrying conductor
Search results
Results from the WOW.Com Content Network
Right-hand rule for a current-carrying wire in a magnetic field B. When a wire carrying an electric current is placed in a magnetic field, each of the moving charges, which comprise the current, experiences the Lorentz force, and together they can create a macroscopic force on the wire (sometimes called the Laplace force).
Magnetic field lines form in concentric circles around a cylindrical current-carrying conductor, such as a length of wire. The direction of such a magnetic field can be determined by using the "right-hand grip rule" (see figure at right). The strength of the magnetic field decreases with distance from the wire.
Two current-carrying wires attract each other magnetically: The bottom wire has current I 1, which creates magnetic field B 1. The top wire carries a current I 2 through the magnetic field B 1, so (by the Lorentz force) the wire experiences a force F 12. (Not shown is the simultaneous process where the top wire makes a magnetic field which ...
In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.
[9]: § 5.6 When the current density in the integral is replaced by a loop of current I in a plane enclosing an area S then the volume integral becomes a line integral and the resulting dipole moment becomes =, which is how the magnetic dipole moment for an Amperian loop is derived.
A brushed DC electric motor generating torque from DC power supply by using an internal mechanical commutation. Stationary permanent magnets form the stator field. Torque is produced by the principle that any current-carrying conductor placed within an external magnetic field experiences a force, known as Lorentz force.
The current flowing through the resistance of the conductor also dissipates energy as heat in the material. Thus eddy currents are a cause of energy loss in alternating current (AC) inductors , transformers , electric motors and generators , and other AC machinery, requiring special construction such as laminated magnetic cores or ferrite cores ...
The current carrying capacity of a conductor, in the context of electric power wiring. ampere The SI unit of electrical current. Ampère's circuital law The mathematical relation between the integral of the magnetic field over some closed curve to the current passing through the region bound by the curve. Ampère's force law
Ads
related to: torque on current carrying conductor