Search results
Results from the WOW.Com Content Network
A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day , which is one complete rotation in relation to distant stars [ 1 ] and is the basis of sidereal time.
When combined with the Earth–Moon system's common orbit around the Sun, the period of the synodic month, from new moon to new moon, is 29.53 days. Viewed from the celestial north pole , the motion of Earth, the Moon, and their axial rotations are all counterclockwise .
One Callippic cycle corresponds to: 940 synodic months; 1,020.084 draconic months; 80.084 eclipse years (160 eclipse seasons); 1,007.410 anomalistic months; The 80 eclipse years means that if there is a solar eclipse (or lunar eclipse), then after one callippic cycle a New Moon (resp. Full Moon) will take place at the same node of the orbit of the Moon, and under these circumstances another ...
The first eon in Earth's history, the Hadean, begins with the Earth's formation and is followed by the Archean eon at 3.8 Ga. [2]: 145 The oldest rocks found on Earth date to about 4.0 Ga, and the oldest detrital zircon crystals in rocks to about 4.4 Ga, [34] [35] [36] soon after the formation of the Earth's crust and the Earth
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).
Synodic orbital period, synodic year or synodic time, the time of an celestial object reappearing in relation two other objects Topics referred to by the same term This disambiguation page lists articles associated with the title Synodic .
A full lunar day observed from the Earth, where orbital libration causes the apparent wobble. A lunar day is the time it takes for Earth's Moon to complete on its axis one synodic rotation, meaning with respect to the Sun. Informally, a lunar day and a lunar night is each approx. 14 Earth days.
This period is a multiple of a Babylonians unit of time equal to one eighteenth of a minute (3 + 1 / 3 seconds), which in sexagesimal is 0;0,0,8,20 days. (The true length of the month, 29.53058885 days, comes to 29;31,50,7,12 in sexagesimal, so the Babylonian value was correct to the nearest 3 + 1 / 3 -second unit.)