Search results
Results from the WOW.Com Content Network
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
The converse of the triangle inequality theorem is also true: if three real numbers are such that each is less than the sum of the others, then there exists a triangle with these numbers as its side lengths and with positive area; and if one number equals the sum of the other two, there exists a degenerate triangle (that is, with zero area ...
The right side is the area of triangle ABC, but on the left side, r + z is at least the height of the triangle; consequently, the left side cannot be smaller than the right side. Now reflect P on the angle bisector at C. We find that cr ≥ ay + bx for P's reflection. Similarly, bq ≥ az + cx and ap ≥ bz + cy. We solve these inequalities for ...
Fuss' theorem for the relation among the same three variables in bicentric quadrilaterals; Poncelet's closure theorem, showing that there is an infinity of triangles with the same two circles (and therefore the same R, r, and d) Egan conjecture, generalization to higher dimensions; List of triangle inequalities
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
Rewriting the inequality above allows for a more concrete geometric interpretation, which in turn provides an immediate proof. [1]+ +. Now the summands on the left side are the areas of equilateral triangles erected over the sides of the original triangle and hence the inequation states that the sum of areas of the equilateral triangles is always greater than or equal to threefold the area of ...
The Barth surface, shown in the figure is the geometric representation of the solutions of a polynomial system reduced to a single equation of degree 6 in 3 variables. Some of its numerous singular points are visible on the image. They are the solutions of a system of 4 equations of degree 5 in 3 variables.
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount; Bhatia–Davis inequality, an upper bound on the variance of any bounded probability distribution; Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS ...