enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products.

  4. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  5. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    The most common structure learning algorithms assume the data is generated by a Bayesian Network, and so the structure is a directed graphical model. The optimal solution to the filter feature selection problem is the Markov blanket of the target node, and in a Bayesian Network, there is a unique Markov Blanket for each node.

  6. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    The ranking SVM algorithm is a learning retrieval function that employs pairwise ranking methods to adaptively sort results based on how 'relevant' they are for a specific query. The ranking SVM function uses a mapping function to describe the match between a search query and the features of each of the possible results.

  7. One-class classification - Wikipedia

    en.wikipedia.org/wiki/One-class_classification

    The hypersphere containing the target data having center c and radius r. Objects on the boundary are support vectors, and two objects lie outside the boundary having slack greater than 0. SVM based one-class classification (OCC) relies on identifying the smallest hypersphere (with radius r, and center c) consisting of all the data points. [10]

  8. Sequential minimal optimization - Wikipedia

    en.wikipedia.org/wiki/Sequential_minimal...

    One disadvantage of this algorithm is that it is necessary to solve QP-problems scaling with the number of SVs. On real world sparse data sets, SMO can be more than 1000 times faster than the chunking algorithm. [1] In 1997, E. Osuna, R. Freund, and F. Girosi proved a theorem which suggests a whole new set of QP algorithms for SVMs. [6]

  9. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    LIBSVM and LIBLINEAR are two popular open source machine learning libraries, both developed at the National Taiwan University and both written in C++ though with a C API. LIBSVM implements the sequential minimal optimization (SMO) algorithm for kernelized support vector machines (SVMs), supporting classification and regression. [1]