enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pole–zero plot - Wikipedia

    en.wikipedia.org/wiki/Polezero_plot

    A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or communications channel. By convention, the poles of the system are indicated in the plot by an X while the zeros are indicated by a circle or O.

  3. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0. A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer.

  4. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    To draw the phase plot, for each pole and zero: If is positive, start line (with zero slope) at 0°. If is negative, start line (with zero slope) at −180°. If the sum of the number of unstable zeros and poles is odd, add 180° to that basis.

  5. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see polezero plot). Evans also invented in 1948 an analog computer to compute root loci, called a "Spirule" (after "spiral" and "slide rule"); it found wide use before the advent of digital computers.

  6. Nyquist stability criterion - Wikipedia

    en.wikipedia.org/wiki/Nyquist_stability_criterion

    The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...

  7. Z-transform - Wikipedia

    en.wikipedia.org/wiki/Z-transform

    where is the zero and is the pole. The zeros and poles are commonly complex and when plotted on the complex plane (z-plane) it is called the polezero plot . In addition, there may also exist zeros and poles at z = 0 {\displaystyle z{=}0} and z = ∞ . {\displaystyle z{=}\infty .}

  8. Closed-loop pole - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_pole

    For negative feedback systems, the closed-loop poles move along the root-locus from the open-loop poles to the open-loop zeroes as the gain is increased. For this reason, the root-locus is often used for design of proportional control , i.e. those for which G c = K {\displaystyle {\textbf {G}}_{c}=K} .

  9. Chebyshev filter - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_filter

    All 16 poles are shown. Each zero has multiplicity of two, and 12 zeroes are shown and four are located outside the picture, two on the positive ω axis, and two on the negative. The poles of the transfer function are poles on the left half plane and the zeroes of the transfer function are the zeroes, but with multiplicity 1.