Search results
Results from the WOW.Com Content Network
From the angular difference in the position of stars (maximally 20.5 arcseconds) [98] it is possible to express the speed of light in terms of the Earth's velocity around the Sun, which with the known length of a year can be converted to the time needed to travel from the Sun to the Earth.
In the context of this article, "faster-than-light" means the transmission of information or matter faster than c, a constant equal to the speed of light in vacuum, which is 299,792,458 m/s (by definition of the metre) [3] or about 186,282.397 miles per second.
The faster the relative velocity, the greater the time dilation between them, with time slowing to a stop as one clock approaches the speed of light (299,792,458 m/s). In theory, time dilation would make it possible for passengers in a fast-moving vehicle to advance into the future in a short period of their own time.
For example, a spaceship could travel to a star 32 light-years away, initially accelerating at a constant 1.03g (i.e. 10.1 m/s 2) for 1.32 years (ship time), then stopping its engines and coasting for the next 17.3 years (ship time) at a constant speed, then decelerating again for 1.32 ship-years, and coming to a stop at the destination. After ...
Relativistic rocket means any spacecraft that travels close enough to light speed for relativistic effects to become significant. The meaning of "significant" is a matter of context, but often a threshold velocity of 30% to 50% of the speed of light (0.3c to 0.5c) is used.
Inside, a light is shone upwards to a mirror on the ceiling, where the light reflects back down. If the height of the mirror is h, and the speed of light c, then the time it takes for the light to go up and come back down is: = However, to the observer on the ground, the situation is very different.
The fastest possible speed at which energy or information can travel, according to special relativity, is the speed of light in vacuum c = 299 792 458 metres per second (approximately 1 079 000 000 km/h or 671 000 000 mph). Matter cannot quite reach the speed of light, as this would require an infinite amount of energy. In relativity physics ...
Position vectors r and r′ used in the calculation. Retarded time t r or t′ is calculated with a "speed-distance-time" calculation for EM fields.. If the EM field is radiated at position vector r′ (within the source charge distribution), and an observer at position r measures the EM field at time t, the time delay for the field to travel from the charge distribution to the observer is |r ...