Search results
Results from the WOW.Com Content Network
Simple Staining is a technique that only uses one type of stain on a slide at a time. Because only one stain is being used, the specimens (for positive stains) or background (for negative stains) will be one color. Therefore, simple stains are typically used for viewing only one organism per slide. Differential staining uses multiple stains per ...
Use of sample-staining methods for use in microbiology, such as simple stains (methylene blue, safranin, crystal violet) and differential stains (negative stains, flagellar stains, endospore stains). Use of a colored (usually blue) or polarizing filter on the light source to highlight features not visible under white light.
Gram stain (Gram staining or Gram's method), is a method of staining used to classify bacterial species into two large groups: gram-positive bacteria and gram-negative bacteria. It may also be used to diagnose a fungal infection. [1] The name comes from the Danish bacteriologist Hans Christian Gram, who developed the technique in 1884. [2]
Histologic specimen being placed on the stage of an optical microscope. Human lung tissue stained with hematoxylin and eosin as seen under a microscope.. Histology, [help 1] also known as microscopic anatomy or microanatomy, [1] is the branch of biology that studies the microscopic anatomy of biological tissues.
Gram-positive bacteria take up the crystal violet stain used in the test, and then appear to be purple-coloured when seen through an optical microscope. This is because the thick layer of peptidoglycan in the bacterial cell wall retains the stain after it is washed away from the rest of the sample, in the decolorization stage of the test.
These stains allow for the detection of white blood cell, red blood cell, and platelet abnormalities. Hematopathologists often use other specialized stains to aid in the differential diagnosis of blood disorders. [citation needed] After staining, the monolayer is viewed under a microscope using magnification up to 1000 times.
Phase-contrast microscopy is particularly important in biology. It reveals many cellular structures that are invisible with a bright-field microscope, as exemplified in the figure. These structures were made visible to earlier microscopists by staining, but this required additional
Antonie van Leeuwenhoek (1632–1723). The field of microscopy (optical microscopy) dates back to at least the 17th-century.Earlier microscopes, single lens magnifying glasses with limited magnification, date at least as far back as the wide spread use of lenses in eyeglasses in the 13th century [2] but more advanced compound microscopes first appeared in Europe around 1620 [3] [4] The ...