Search results
Results from the WOW.Com Content Network
As stated above, Thales's theorem is a special case of the inscribed angle theorem (the proof of which is quite similar to the first proof of Thales's theorem given above): Given three points A, B and C on a circle with center O, the angle ∠ AOC is twice as large as the angle ∠ ABC. A related result to Thales's theorem is the following:
Multiple proofs of the theorem have been published. Steiner's proof uses Pappus chains and Viviani's theorem. Proofs by Philip Beecroft and by H. S. M. Coxeter involve four more circles, passing through triples of tangencies of the original three circles; Coxeter also provided a proof using inversive geometry.
As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral for which this is true can be inscribed in a circle. As another example, the inscribed angle theorem is the basis for several theorems related to the power of a point with respect to a circle.
Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.
Theorem: If the union of k discs is disjoint from the union of the other n − k discs then the former union contains exactly k and the latter n − k eigenvalues of A, when the eigenvalues are counted with their algebraic multiplicities. Proof: Let D be the diagonal matrix with entries equal to the diagonal entries of A and let
An inversion in their tangent point with respect to a circle of appropriate radius transforms the two touching given circles into two parallel lines, and the third given circle into another circle. Thus, the solutions may be found by sliding a circle of constant radius between two parallel lines until it contacts the transformed third circle.
Cut-elimination theorem (proof theory) Deduction theorem ; Diaconescu's theorem (mathematical logic) Easton's theorem ; Erdős–Dushnik–Miller theorem ; Erdős–Rado theorem ; Feferman–Vaught theorem (model theory) Friedberg–Muchnik theorem (mathematical logic) Fundamental theorem of equivalence relations
A short elementary proof of Pascal's theorem in the case of a circle was found by van Yzeren (1993), based on the proof in (Guggenheimer 1967). This proof proves the theorem for circle and then generalizes it to conics. A short elementary computational proof in the case of the real projective plane was found by Stefanovic (2010).