Search results
Results from the WOW.Com Content Network
The idea that special relativity depended only on two postulates, both of which seemed to follow from the theory and experiment of the day, was one of the most compelling arguments for the correctness of the theory (Einstein 1912: "This theory is correct to the extent to which the two principles upon which it is based are correct.
Special relativity is a theory of the structure of spacetime. It was introduced in Einstein's 1905 paper "On the Electrodynamics of Moving Bodies" (for the contributions of many other physicists and mathematicians, see History of special relativity). Special relativity is based on two postulates which are contradictory in classical mechanics:
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies , the theory is presented as being based on just two postulates : [ p 1 ] [ 1 ] [ 2 ]
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics.
Einstein developed the theory of special relativity based on these two postulates. This theory made many predictions which have been experimentally verified, including the relativity of simultaneity, length contraction, time dilation, the relativistic velocity addition formula, the relativistic Doppler effect, relativistic mass, a universal ...
And in an important overview article on the relativity principle (1908a), Einstein described SR as a "union of Lorentz's theory and the relativity principle", including the fundamental assumption that Lorentz's local time can be described as real time. (Yet, Poincaré's contributions were rarely mentioned in the first years after 1905.)
According to the special theory of relativity introduced by Albert Einstein, it is impossible to say in an absolute sense that two distinct events occur at the same time if those events are separated in space. If one reference frame assigns precisely the same time to two events that are at different points in space, a reference frame that is ...
Einstein puts forward two postulates to explain these observations. First, he applies the principle of relativity, which states that the laws of physics remain the same for any non-accelerating frame of reference (called an inertial reference frame), to the laws of electrodynamics and optics as well as mechanics. In the second postulate ...