Search results
Results from the WOW.Com Content Network
A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.
The knee of a curve can be defined as a vertex of the graph. This corresponds with the graphical intuition (it is where the curvature has a maximum), but depends on the choice of scale. The term "knee" as applied to curves dates at least to the 1910s, [1] and is found more commonly by the 1940s, [2] being common enough to draw criticism.
A critical point of such a curve, for the projection parallel to the y-axis (the map (x, y) → x), is a point of the curve where (,) = This means that the tangent of the curve is parallel to the y -axis, and that, at this point, g does not define an implicit function from x to y (see implicit function theorem ).
In thermodynamics, a critical point (or critical state) is the end point of a phase equilibrium curve. One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist.
This curve can be obtained as the inverse transform of a hyperbola, with the inversion circle centered at the center of the hyperbola (bisector of its two foci). It may also be drawn by a mechanical linkage in the form of Watt's linkage , with the lengths of the three bars of the linkage and the distance between its endpoints chosen to form a ...
In addition to curves and surfaces, parametric equations can describe manifolds and algebraic varieties of higher dimension, with the number of parameters being equal to the dimension of the manifold or variety, and the number of equations being equal to the dimension of the space in which the manifold or variety is considered (for curves the ...
A Bézier curve is defined by a set of control points P 0 through P n, where n is called the order of the curve (n = 1 for linear, 2 for quadratic, 3 for cubic, etc.). The first and last control points are always the endpoints of the curve; however, the intermediate control points generally do not lie on the curve.
In other words, if a curve is defined by a continuous function with an interval as a domain, the curve is simple if and only if any two different points of the interval have different images, except, possibly, if the points are the endpoints of the interval. Intuitively, a simple curve is a curve that "does not cross itself and has no missing ...