enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Planck–Einstein equation and de Broglie wavelength relations. P = (E/c, p) is the four-momentum, K = (ω / c, k) is the four-wavevector, E = energy of particle. ω = 2π f is the angular frequency and frequency of the particle. ħ = h /2π are the Planck constants. c = speed of light.

  3. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    t. e. Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave -like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. The concept that matter behaves like a wave was ...

  4. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. [1][2] In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings.

  5. Rydberg formula - Wikipedia

    en.wikipedia.org/wiki/Rydberg_formula

    In 1890, Rydberg proposed on a formula describing the relation between the wavelengths in spectral lines of alkali metals. [2]: v1:376 He noticed that lines came in series and he found that he could simplify his calculations using the wavenumber (the number of waves occupying the unit length, equal to 1/λ, the inverse of the wavelength) as his unit of measurement.

  6. Planck constant - Wikipedia

    en.wikipedia.org/wiki/Planck_constant

    The Planck constant, or Planck's constant, denoted by ,[1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon 's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.

  7. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The equation was postulated by Schrödinger based on a postulate of Louis de Broglie that all matter has an associated matter wave. The equation predicted bound states of the atom in agreement with experimental observations. [4]: II:268 The Schrödinger equation is not the only way to study quantum mechanical systems and make predictions.

  8. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    Refraction of a light ray. In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the medium to the speed in air or vacuum. The refractive index determines how much the path of light is bent, or refracted, when entering a material. This is described by Snell's law of refraction ...

  9. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10−3 m⋅K, [1][2] or b ≈ ...