Search results
Results from the WOW.Com Content Network
In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has a total of 62 faces: 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, with 60 vertices , and 120 edges .
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry.The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments.
Every abstract triangulation of the projective plane can be embedded into 3D as a polyhedral Möbius strip with a triangular boundary after removing one of its faces; [35] an example is the six-vertex projective plane obtained by adding one vertex to the five-vertex Möbius strip, connected by triangles to each of its boundary edges. [31]
Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown. There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.
Summarizing the examples above, the deltahedra can be conclusively defined as the class of polyhedra whose faces are equilateral triangles. [5] Another definition by Bernal (1964) is similar to the previous one, in which he was interested in the shapes of holes left in irregular close-packed arrangements of spheres. It is stated as a convex ...
A geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry, such that they have 6 triangles at a vertex, except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra, of which all but the smallest one (which is a regular dodecahedron) have mostly hexagonal faces.